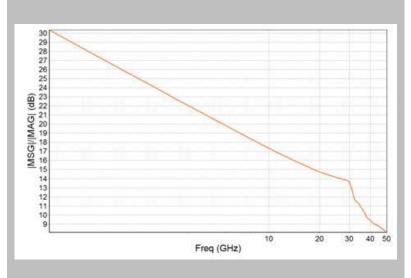

Foundry Process Data Sheet

PPH15X-20

0.15µm power pHEMT

Description



This 0.15µm pHEMT process is optimized for wideband high power amplification up to 45GHz. The process includes two metal interconnect layers, precision TaN resistors, high values TiWSi resistors, MIM capacitors, airbridges and via-holes through the substrate.

Overcoating layer is available as an option.

Main Features

- 0.15µm pHEMT process
- Typical Ft: 70GHz
- Power density: 800mW/mm
- TaN and TiWSi resistors
- GaAs resistors
- M.I.M. capacitors (standard & high density)
- Air bridges
- Via-holes
- Operation Vds= 6.0V
- Vbds > 12.0V
- Wafer thickness: 70µm
- Wafer diameter: 100mm

Design Kit Characteristics

- Available for ADS from Keysight, MwO from AWR
- Scalable models for passive devices
- Non-linear model for source grounded FET

Electrical Characteristics

ELEMENT / Parameters FET /	Min	Тур	Max	Units	Conditions
Threshold voltage Vp	-1.2	-0.95	-0.7	V	Vds=2.0V,lds=ldss/100
Transconductance Gm	430	-	-	mS/mm	Vds=2.0V, Vgs=0V
Saturation current Idss	270	-	-	mA/mm	Vds=2.0V, Vgs=0V
Breakdown voltage Vbds	12	14	18	V	Ids= Idss/100
Coplanar FET (2x75µm) equivalent circuit					
Transconductance Gme	45	60	75	mS	Vds=3.0V, Vgs=0V
Input capacitance Cin	100	130	160	fF	Vds=3.0V, Vgs=0V
Feedback capacitance Cf	12	15	18	fF	Vds=3.0V, Vgs=0V
Output resistance Rout	300	400	500	Ω	Vds=3.0V, Vgs=0V
TaN RESISTOR /					
sheet resistance	26	30	34	Ω/square	
MIM CAPACITOR /					
Standard Density	240	250	280	pF/mm2	@1MHz
High Density	550	625	700	pF/mm2	@1MHz
TiWSi RESISTOR /					
sheet resistance	800	1000	1200	Ω/square	
GaAs RESISTOR					
Ohmic contact resistance		0.12	0.3	Ω.mm	
GaAs sheet resistance	85	95	105	Ω/square	

Ordering Information

Visit our Website for more info: http://www.ums-rf.com

Please contact our Sales at: marketing.sales@ums-rf.com & Tel: +33 1 69 86 32 00 / Fax: + 33 1 69 86 34 34

Information furnished is believed to be accurate and reliable. However United Monolithic Semiconductors S.A.S. assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of United Monolithic Semiconductors S.A.S.. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. United Monolithic Semiconductors S.A.S. products are not authorised for use as critical components in life support devices or systems without express written approval from United Monolithic Semiconductors S.A.S.

Ref.: 150505_DS GaAs PPH15X_20 Process_5125 2/2