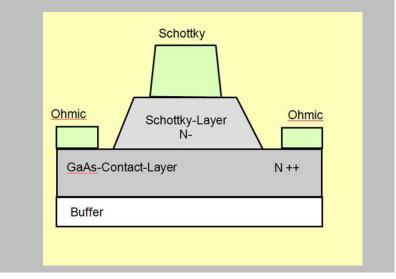
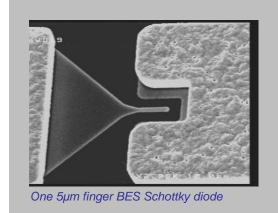

Foundry Process Data Sheet

BES

Schottky Diode




Description

The 1µm Schottky diode process is optimized for very high frequency mixers or switches up to several hundred of GHz. The process includes two metal interconnect layers, precision TaN resistors, high values TiWSi resistors, MIM capacitors, air-bridges and via-holes through the substrate.

Main Features

- 1.0 µm Schottky diode
- Fully optical process
- Typical Ft: 3THz
- TaN and TiWSi resistors
- GaAs resistors
- M.I.M. capacitors
- Air bridges
- Via-holes
- Wafer thickness: 100µm
- Wafer diameter: 100mm
- Space evaluated process according to ESA (EPPL)

Design Kit Characteristics

- Available for ADS from Keysight, MwO from AWR and Nexxim from Ansoft
- Schematic entry with autolayout generation
- Scalable models for passive devices
- Scalable non-linear diode models
- Data for spread analysis

Electrical Characteristics

ELEMENT / Parameters	Min	Тур	Max	Units	Conditions
Diode (1x5µm) Ideality factor n	1.0	1.2	1.3	-	Vdiode = 0.55V
J0 diode	-	3e-6	1e-4	A/cm ²	valoue = 0.00 v
Series resistance Rs	3	5	8	Ω	Idiode = 15mA
Breakdown voltage V_bd	-10	-6.5	-5	V	Idiode = -20µA
Forward voltage V_on	-	0.65	0.8	V	Idiode = 20µA
Coplanar diode (1x5µm) equivalent circuit					
Cut-off frequency		3		THz	
Intrinsic capacitance Cj		8		fF	
Parasitic capacitance Cp		6		fF	
Tan Resistor /					
sheet resistance	26	30	34	Ω/square	
MIM CAPACITOR /					
density	290	330	370	pF/mm2	@1MHz
TiWSi RESISTOR /					
sheet resistance	800	1000	1200	Ω/square	
GaAs RESISTOR					
Ohmic contact resistance	-	0.05	0.3	$\Omega.mm$	
GaAs sheet resistance	7	9	11	Ω /square	

Ordering Information

Visit our Website for more info: http://www.ums-rf.com

Please contact our Sales at: marketing.sales@ums-rf.com & Tel: +33 1 69 86 32 00 / Fax: + 33 1 69 86 34 34

Information furnished is believed to be accurate and reliable. However **United Monolithic Semiconductors S.A.S.** assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of **United Monolithic Semiconductors S.A.S.**. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. **United Monolithic Semiconductors S.A.S.** products are not authorised for use as critical components in life support devices or systems without express written approval from **United Monolithic Semiconductors S.A.S.**.