
24-27.5GHz 5W Power Amplifier

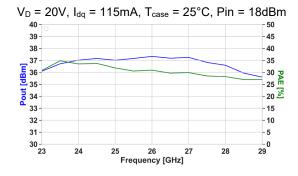
GaN Monolithic Microwave IC Bare Die

Description

The CHA6682-98F is a three stage High Power Amplifier operating between 24 and 27.5GHz providing 5W of saturated output power with 32% of Power Added Efficiency. It includes a power detector. The amplifier exhibits more than 25dB small signal gain with a typical power supply of 20V/115mA quiescent current. This High Power Amplifier is dedicated to telecommunication applications and well suited for a wide range of microwave applications and systems.

The circuit is manufactured on a robust GaN on SiC HEMT process and is available as a bare die with BCB protection layer. The input and output are matched to 50Ω and integrate ESD RF protection.

Main Features


■ Frequency range: 24 – 27.5GHz

■ High output power: 5W

■ High PAE: 32%■ Linear Gain: 25dB■ Output Power Detector

■ DC bias: Vd = 20V & Idq = 115mA

■ Chip size: 2.5x1.6mm²
 ■ Available in bare die form

Main Electrical Characteristics

T_{case} = 25°C (T_{case} : Chip Backside Temperature)

Symbol	Parameter	Min	Тур	Max	Unit
Freq	Frequency range	24		27.5	GHz
Gain	Linear Gain		25		dB
Psat	Saturated Output Power		37		dBm
PAE	Power Added Efficiency		32		%

Specifications

 T_{case} = +25°C, Vd = +25V, CW mode

Symbol	Parameter	Min	Тур	Max	Unit
Freq	Frequency range	24		27.5	GHz
Gain	Linear Gain		25		dB
Pout	Saturated Output Power		37		dBm
PAE	Power Added Efficiency		32		%
ld	Drain current at saturation		1000		mA
S11	Input Return Loss		-7		dB
S22	Output return loss		-10		dB
ldq	Quiescent current		115		mA
Vd	Drain Voltage		20		V

These values are representative of on-board measurements as defined on the drawing in paragraph "Evaluation board".

Absolute Maximum Ratings (1)

 $T_{case} = +25^{\circ}C$

Symbol	Parameter	Values	Unit
Vd	Drain bias voltage	27	V
ldq	Quiescent Drain bias current	1.5	Α
Vg	Gate bias voltage	-7 to -1	V
Pin	Maximum Input Power	21	dBm

⁽¹⁾ Operation of this device above anyone of these parameters may cause permanent damage

Recommended Operating Range (2), (3)

Symbol	Parameter	Values	Unit
Vd	Drain bias voltage	18 to 25	V
ld	Drain bias current	90 to 150	mA
Vg	Gate bias voltage	-5 to -2.5	V
Pin	Maximum Input Power	18	dBm
Tj	Maximum Junction temperature ⁽⁴⁾	200	°C

⁽²⁾ Electrical performances are defined for specified test conditions

Temperature Range

T _{case}	Operating temperature range	-40 to +85	°C
T_{stg}	Storage temperature range	-55 to +150	°C

⁽³⁾ Electrical performances are not guaranteed over all recommended operating conditions

⁽⁴⁾ See Device thermal performances section

Typical Bias Conditions

 $T_{case} = 25^{\circ}C$

Symbol	Pad N°	Parameter	Values	Unit
Vg	6, 13, 17, 19	Gate voltage tuned for Idq = 115mA	~ -3	V
Vd	2, 4, 11, 15	Drain voltage	20	V
Vc	8	Control voltage	5	V

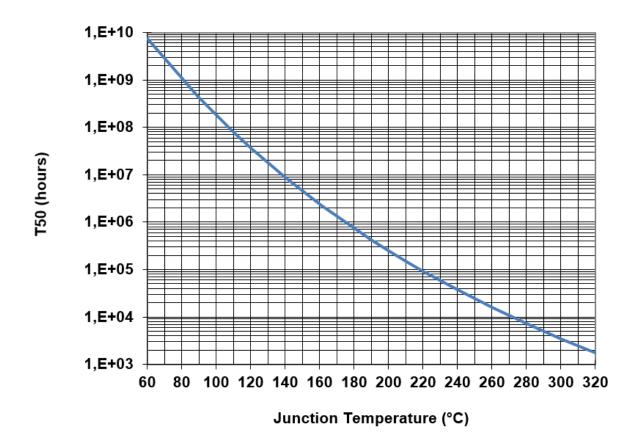
"Power ON" sequence

- 1. Bias HPA gate voltage at Vg close to Vpinch-off (Vg~-5V)
- 2. Set Vd bias voltage to 0V: Id=0mA
- 3. Apply Vd bias voltage, Vd = 20V: Id=0mA
- 4. Set Vc bias voltage to 5V for Detector biasing
- 5. Increase Vg up to guiescent bias drain current Idg=216mA
- 6. Apply RF input Power

"Power OFF" sequence

- 1. Turn off RF input power
- 2. Bias HPA Gate voltage at Vg~-5V: Id=0mA
- 3. Decrease Vd bias voltage down to 0V
- 4. Set Vc bias voltage to 0V
- 5. Turn Vg bias voltage to 0V

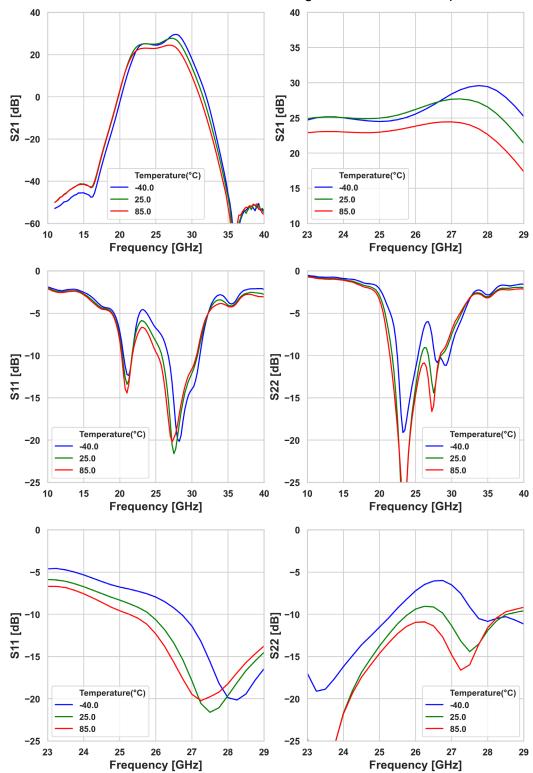
Device thermal performances


The device thermal performances below are based on UMS rules to evaluate the junction temperature.

This same procedure is the basis for junction temperature evaluation of the samples used to derive the Median lifetime and activation energy for the particular technology on which the CHA6682-98F is manufactured (GaN HEMT 0.15µm).

The temperature T_{case} is defined as the chip backside temperature. The thermal resistance ($R_{th eq}$) given in the following table, is for the full circuit in CW mode.

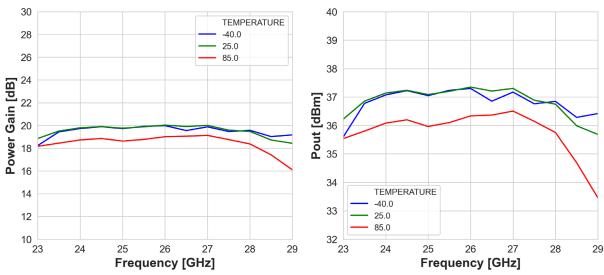
Thermal Resistance ⁽¹⁾	R _{th_eq}	T _{case} = 25°C, Vd = 20V, ldq = 115 mA,	4.61	°C/W
Junction Temperature	Tj	Vd = 20V, 10q = 115 mA, Pin = 18 dBm, Freq = 26GHz, Pdiss = 12 W	76	°C
Median Life	T50	Puiss – 12 W	1.52E+09	Hrs
-				
Thermal Resistance ⁽¹⁾	R _{th_eq}	$T_{case} = 85^{\circ}C,$	6.22	°C/W
	R _{th_eq}	T _{case} = 85°C, Vd = 20V, Idq = 115 mA, Pin = 21 dBm, Freq = 26GHz, Pdiss = 13 W	6.22	°C/W

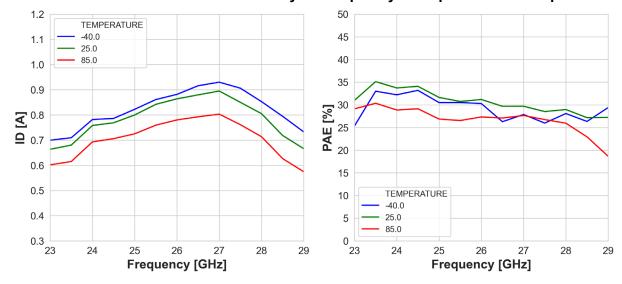

⁽¹⁾ Thermal resistance measured at the backside of the chip

Typical Board Measurements: Small Signal Performances

CW measurements: Vd = 20V, Idq = 115mA, $T_{case} = -40^{\circ}C / 25^{\circ}C / 85^{\circ}C$ Board losses are de-embedded. Measurements are given in die reference planes.

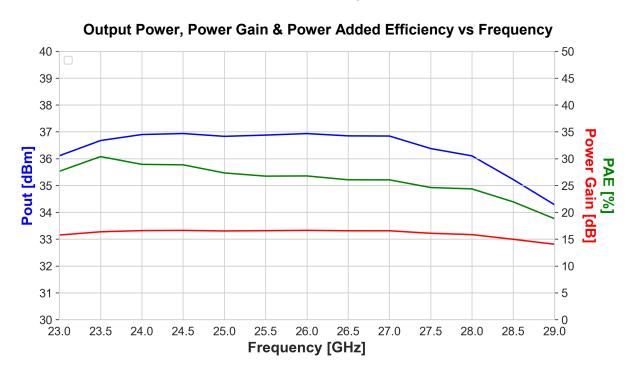
Ref.: DSCHA66823348 - 15 Dec 23


Specifications subject to change without notice

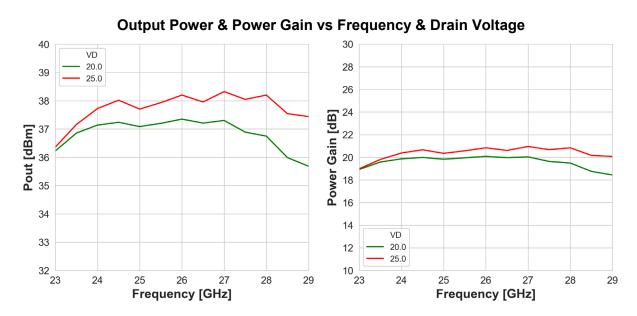

Typical Board Measurements: Large Signal Performances

CW measurements: Pin = 18dBm, Vd = 20V, Idq = 115mA (adjusted at 25°C) Board losses are de-embedded. Measurements are given in die reference planes.

Power Gain & Output Power vs Frequency & Chip Backside Temperature



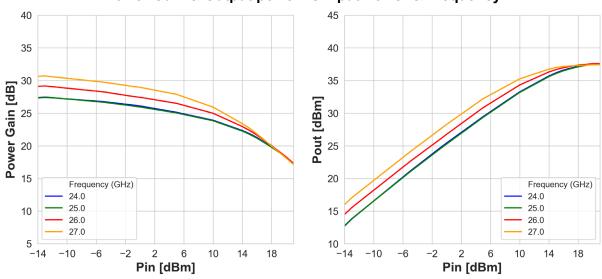
Drain current & Power Added Efficiency vs Frequency & Chip Backside Temperature

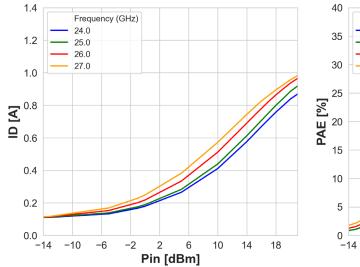


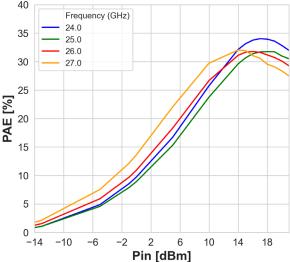
Typical Board Measurements: Non-linear performances

CW measurements : Pin = 21dBm, T_{case} =85°C, Vd = 20V, Idq = 115mA (adjusted at 25°C) Board losses are de-embedded. Measurements are given in die reference planes.

CW measurements : Pin = 18dBm, $T_{case} = 25$ °C, Idq = 115mA (adjusted at 25°C) Board losses are de-embedded. Measurements are given in die reference plans.

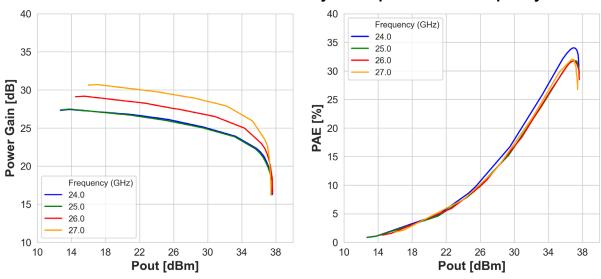



Typical Board Measurements: Non-linear performances

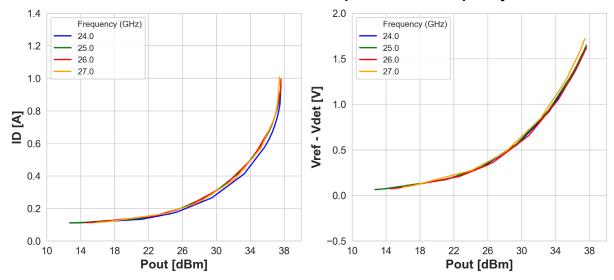

CW measurements: T_{case} = 25°C, Vd = 20V, Idq = 115mA (adjusted at 25°C) Board losses are de-embedded. Measurements are given in die reference planes.

Power Gain & Output power vs Input Power & Frequency

Drain current & Power Added Efficiency vs Input Power & Frequency

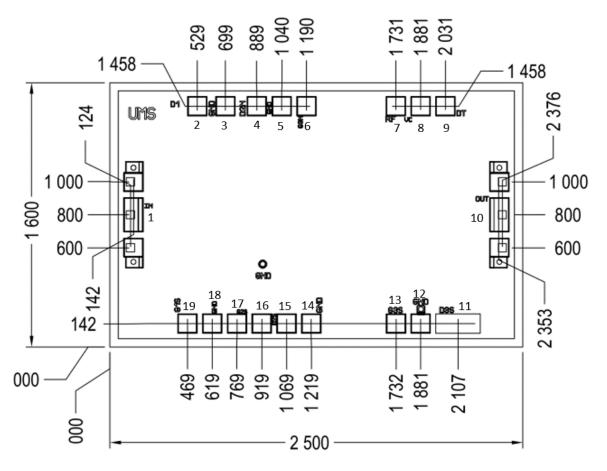


8/12


Typical Board Measurements: Non-linear performances

CW measurements : T_{case} = 25°C, Vd = 20V, Idq = 115mA (adjusted at 25°C) Board losses are de-embedded. Measurements are given in die reference planes.

Power Gain & Power Added Efficiency vs Output Power & Frequency



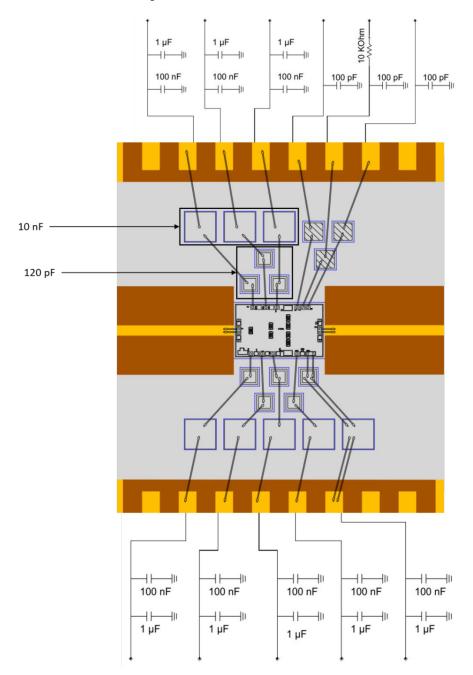
Drain current & Vref - Vdet vs Output Power & Frequency

Mechanical data

Chip thickness: 70µm.

Chip size: 2500x1600 ±35µm All dimensions are in micrometers

DC pads (2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19) size is 116x116µm²


DC pad (1, 10) opening is 216x116µm² DC pads (11) opening is 269x116µm²

1-	RF_IN	8-	Vc	15-	VD2S
2-	VD1N	9-	VDET	16-	GND ⁽¹⁾
3-	GND ⁽¹⁾	10-	RF_OUT	17-	VG2S
4-	VD2N	11-	VD3S	18-	GND ⁽¹⁾
5-	GND ⁽¹⁾	12-	GND ⁽¹⁾	19-	VG1S
6-	VG3N	13-	VG3S		
7-	VREF	14-	GND ⁽¹⁾		

⁽¹⁾ Ground all pins marked "GND" through the PCB board is strongly recommended. Ensure that the PCB board is designed to provide the best possible ground to the die.

Recommended Assembly Plan

The decoupling network used is composed of 4 levels of parallel capacitors. The first level is 120pF chip capacitor, the second level is 10nF chip capacitor, the third level is 100nF chip capacitor and the fourth level is 1μ F SMD capacitor. The first two levels should be as close as possible to the die.

ESD sensitivity

Parameter	Classification	Standard
Human Body Model (HBM)	1A	ANSI/ESDA/JEDEC - JS-001

Ref.: DSCHA66823348 - 15 Dec 23

Specifications subject to change without notice

Recommended reflow process assembly

Refer to the application note AN0001 available at https://www.ums-rf.com for die attach.

Recommended environmental management

UMS products are compliant with the regulation in particular with the directives RoHS N°2011/65 and REACh N°1907/2006. More environmental data are available in the application note AN0019 also available at https://www.ums-rf.com.

Recommended ESD management

Refer to the application note AN0020 available at https://www.ums-rf.com for ESD sensitivity and handling recommendations for the UMS products.

Ordering Information

Chip form : CHA6682-98F/00

Information furnished is believed to be accurate and reliable. However **United Monolithic Semiconductors S.A.S.** assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of **United Monolithic Semiconductors S.A.S.**. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. **United Monolithic Semiconductors S.A.S.** products are not authorised for use as critical components in life support devices or systems without express written approval from **United Monolithic Semiconductors S.A.S.**

Ref. : DSCHA66823348 - 15 Dec 23

Specifications subject to change without notice

